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This paper exploits concepts derived from the thermodynamics of curves for the 
analysis and classification of  dynamic systems. In particular, a new indicator based on 
an entropy measure is used to retrieve some information about the degree of irregularity 
of a curve. Irregularity is meant as a distance from the ordered situation of a sequence of 
points on a straight line. The proposed indicator is used to compare the evolution of 
trajectories in the state space for any dynamic system, and some of its properties are 
very interesting for the study and classification of nonlinear systems. Nowadays 
classification of nonlinear systems is still a tough subject, and there are not yet 
systematic approaches to tackle it. It would be useful however, especially for industrial 
applications, to know how much a dynamic system behaves like a linear system. The 
proposed indicator has interesting properties, in particular it provides a finite value 
which does not depend on stability issues and it always provides a constant unitary 
outcome when applied to linear systems. Nonlinearity of a dynamic system can hence 
be evaluated as a distance from the ideal linear condition. The proposed indicator was 
then tested for several benchmark problems, also for chaotic systems to emphasize the 
theoretical expectations. 
 
1. Introduction 
It might look odd that a powerful concept such the one of entropy, whose importance is 
extended but not limited to mechanics, thermodynamics, information theory and 
geostatistics, has not found an essential role in other disciplines, like for instance in the 
systems theory field. Only a few attempts have been made, see for example (Saridis, 
1988) and (Feng et al., 1997), to introduce entropy-based tools in control theory. In this 
paper an entropy based approach, which is derived from the theory of thermodynamics 
of curves, like in (Mendès France, 1983), (Dupain et al., 1986) and (Denis and 
Crémoux, 2002), is suggested and adapted for systems theory applications. A new 
entropic indicator is introduced with interesting properties. It is different from other 
known algorithms used to classify nonlinear systems or attracting sets, like Lyapunov 
exponents, or dimension-like concepts, as in (Parker and Chua, 1987). Classification of 
nonlinear systems is somehow a tough subject, and there is not yet a systematic 
approach to tackle it, at least to the authors’ knowledge. Some attempts can be found in 
(Dragt et al., 1992), where invariant moments of distribution of particles undergoing a 
Hamiltonian system are investigated, and (Hofstadter and Saridis, 1976), where 
classification of nonlinear stochastic systems was performed using input-output 
measurements. In this paper a new indicator is proposed that has the property of 



providing a unitary value whenever applied to linear systems. Moreover the proposed 
indicator does not depend on stability issues and is generally able to describe the 
disorder or irregularity in the evolution of a dynamic system. By irregularity it is meant 
a distance from an ordered sequence of points along a line. The proposed indicator can 
be used within any dynamic system; differences arise when the steady state is an 
equilibrium point, or the attracting set is a periodic sequence or presents a chaotic 
behaviour. 
The paper is organized as follows: next section is dedicated to a review of the entropy of 
curves and basic concepts from thermodynamics of curves are recalled. Section 2 shows 
how the entropy indicator has been developed within a system theory framework and 
the most important properties of the proposed algorithm are proved. In the third section 
examples are shown from nonlinear benchmark problems, both presenting periodic and 
chaotic behaviours. In the last section some conclusions are given, and some future 
work is outlined.  
 
2. Thermodynamics Of Curves  
Notions about thermodynamics of plane curves can be found in (Mendès France, 1983) 
and (Dupain et al., 1986); here the fundamental concepts are reviewed using the same 
notation as in (Denis and Crémoux, 2002) to provide the most important mathematical 
basis for the proposed approach. 
The starting point is a finite curve Γ of length L. Let Cr be the convex hull of Γ and C 
the length of its boundary. From a theorem of Steinhaus, the expected value of the 
number of intersection points of a random line D with a plane curve is computed as in 
equation (1): 
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where nP  is the probability for a line set to intersect a plane curve in n points. 

Probability is computed as the number of lines which intersect the plane curve with 
respect to the total number of intersecting lines. If we consider now a probability 
distribution ( )npppp ,...,, 21= , such that 0≥ip  for all I, and 
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Shannon’s measure of entropy (or uncertainty) for such a distribution is given by 
equation (3): 
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By analogy the entropy of a curve Γ can be defined as (Mendès France, 1983) 
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If we consider all the probability measures which satisfy Steinhaus theorem, and 
maximise entropy using Gibb’s equilibrium measure, then the maximal entropy is 
 

⎟
⎠
⎞⎜

⎝
⎛ −−= 1βeβnenP             (5)  

 
where 
 

⎟
⎠
⎞

⎜
⎝
⎛

−
=

C2L
2Llogβ             (6)  

 
Combining then equations (4), (5) and (6), we find the function of entropy of a plane 
curve Γ, (Mendès France, 1983) 
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The entropy function of a plane curve is characterized by the length L of the line and the 
length C of the complex hull. In literature, thermodynamics of curves has been applied 
to the study of time series, where the length L is the measurement of the fluctuating 
tortuous path of a curve in a plane, while C is assumed to be a time (Denis and 
Crémoux, 2002). In the next section it is shown how the entropy of a curve can be 
rearranged in a different context to suggest a classification of nonlinear systems. 
 
3. Application Of Entropy Of Curves To State Space Analysis Of 
Dynamic Systems 
This section shows how theoretical concepts from thermodynamics of curves have been 
exploited to propose a classification of nonlinear systems and provides some properties 
of the proposed approach. Supposing to start from a discrete state-space formulation of 
a dynamic system, 
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External inputs can be included in the previous equations without significant changes, 
and have not been considered here just for sake of simplicity. The general idea is to 
consider a cloud of particles, which represent points in the state space, and to study how 
the cloud of points evolves in time. If we consider the line that joins all the points 
together, it is possible to study how the entropy of the curve changes with time, 



according to equation (9), which is an extension to more dimensions of equation (8), 
more suitable for systems theory applications. Following the approach of (Denis and 
Crémoux, 2002), we obtain 
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where the logarithm is referred to base 2. Therefore, as can be seen from equation (9), 
computation of the convex hull in nℜ  was substituted by computation of the diameter d 
of the smallest ball that encloses all the particles. Definition of the entropy indicator as 
in equation (9) has an intuitive meaning: a straight line has a unitary entropy, while 
entropy increases with the irregularity of the curve as shown in the figure below. 
 

 
 
The figure shows the different entropy values for different lines that have the same 
endpoints. The entropy indicator clearly depends on the irregularity of the curve 
 
Hence computation of the entropy of a curve is performed by choosing a prespecified 
number of particles along a straight line and making them evolve independently. The 
entropy indicator has special properties that are listed below. Their proofs can be found 
in (Balestrino et al., 2007). 
Remark 1: H(k) as defined in equation (9) is always a finite number. 
Remark 2: H(k) as defined in equation (9) depends on the logarithm of the number of 
particles. 
Remark 3: A cloud of particles ordered sequentially along a straight line has a constant 
value of H(k), as defined in equation (9), equal to 1. 
Lemma: H(k) as defined in equation (9) has a constant value 1 when applied to linear 
systems. 
 
4. Examples of the Proposed Indicator 
In the previous section it was shown that the proposed indicator provides a constant 
unitary value when applied to linear systems, thus suggesting that it could be used for 
nonlinear systems to verify how much a nonlinear system is far from the ideal linear 
condition. This would be a very useful notion for many industrial applications in several 
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fields. In this section many benchmark problems have been studied from the entropy of 
curves point of view, looking for common patterns. 
 

 
H(k) in Kaprekar dynamic system                      H(k) in Lorentz dynamic system 
 

 
H(k) in Van Der Pol system                                H(k) in a logistic chaotic system 

 
H(k) in a logistic non chaotic system                     H(k) in a linear dynamic system  
 
The previous figures represent evolutions of the proposed indicator for different 
dynamic systems. From left to right and from top to down they represent Kaprekar, see 
for example (Salwi, 1997), Lorentz, Van der Pol, logistic with chaotic behaviour, 
logistic without chaotic behaviour and linear equations. As can be seen, the first four 



figures are rather similar, although they represent chaotic systems (Lorenz and logistic 
equations) and dynamic systems with a periodic limit cycle (Van der Pol and Kaprekar 
equations). The same logistic example behaves differently according to the chaotic 
parameter, as is evident from a comparison between the fourth and the fifth figure. The 
linear example provides finally a constant unitary value. Classification among the 
nonlinear systems can rely on the steady state value of the entropy indicator, whose 
module clearly separates linear or quasi-linear behaviours from periodic and completely 
nonlinear behaviours. Also rise times and solution times provide some more 
information about the overall nonlinearity of the dynamic system.  
 
4. Conclusions 
The paper proposes a classification of nonlinear systems based upon an entropy of curve 
approach. The mathematical basis and the analytical properties are thoroughly provided, 
together with a series of examples that shows the behaviour of the proposed algorithm. 
The entropy indicator is hence able to distinguish linear from nonlinear systems, and to 
classify nonlinear systems through a degree of nonlinearity.  
Some ongoing work is now been developed to find some more properties of the 
proposed indicator and to find whether the irregularity of each nonlinear system can be 
used to provide some more insight about dynamic systems. A valid framework to tackle 
a classification of nonlinear systems would be very useful for process control 
applications in different fields, to predict the behaviour of the dynamic system.  
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